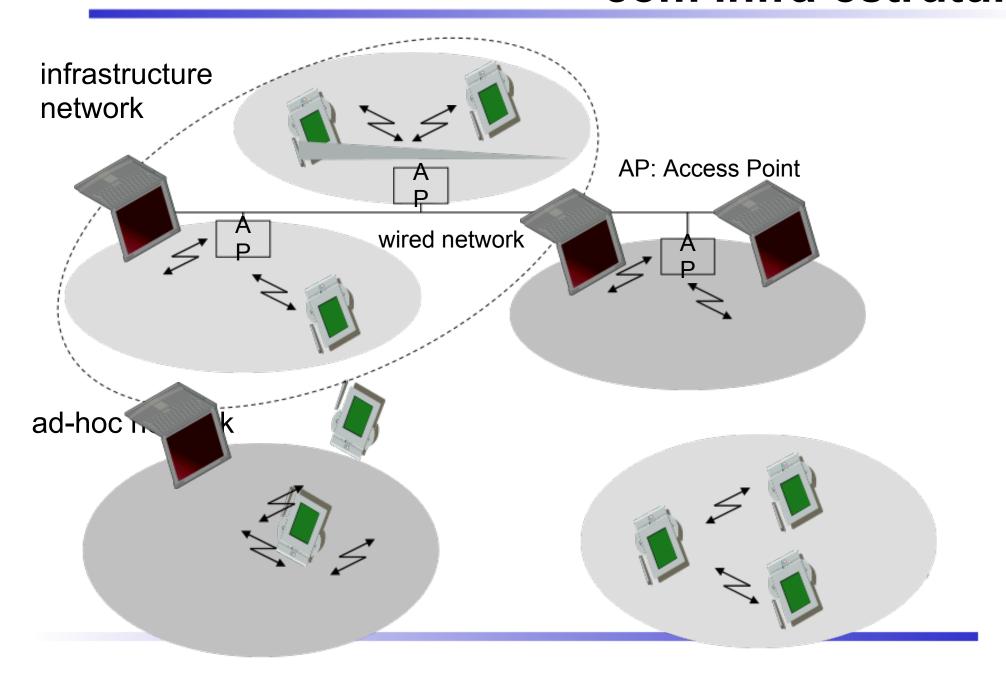
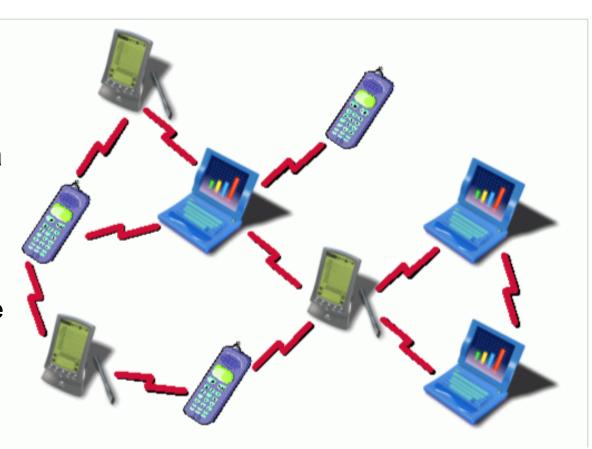
Redes Sem Fio


Aula 02: 802.11, Bluetooth etc

Redes Sem Fio: Modos de operação

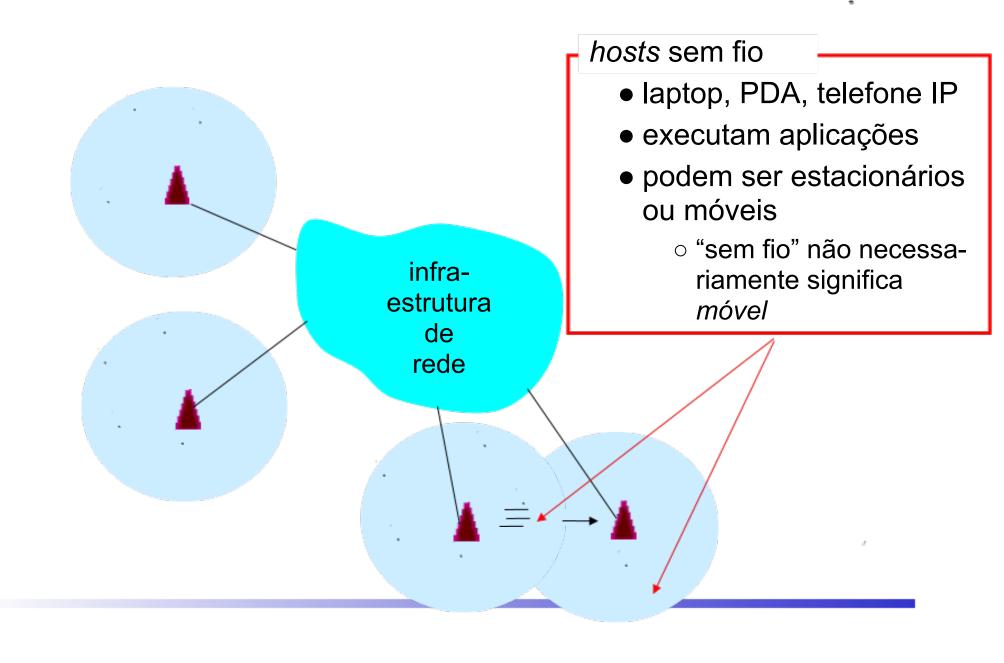
Modo estruturado


Modo Ad hoc

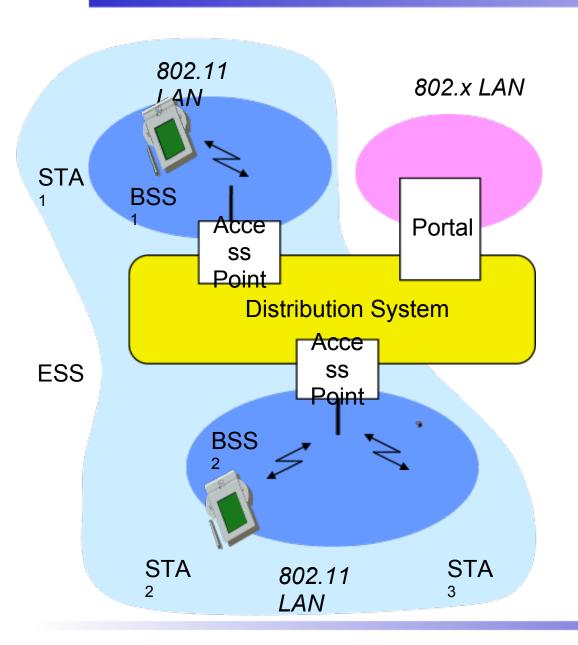
Comparação: Redes ad-hoc X Redes com infra-estrutura

Modo Ad Hoc

- Sem ponto de acesso
- Estações se conectam umas às outras diretamente
- Multihop: uma estação encaminha tráfego para outra até chegar ao destino
- MANET: Mobile Ad hoc NETwork
 - quando as estações na rede ad hoc são móveis
 - o criação espontânea
 - topologia dinâmica
 - área de abrangência indefinida

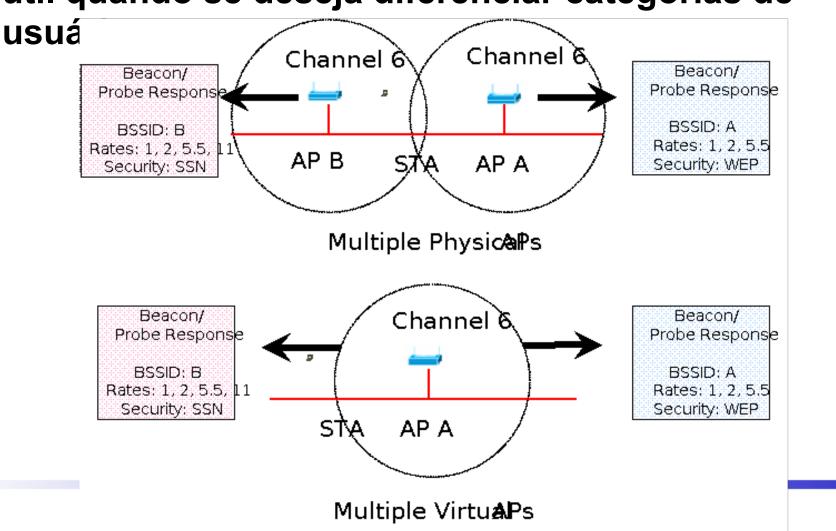


Modo com Infra-estrutura


- Ponto de acesso conecta as estações entre si e com uma rede (cabeada) externa
- Estações se comunicam entre si por intermédio do ponto de acesso
- Abrangência definida pelo alcance do sinal do ponto de acesso

Elementos de uma rede sem fio (modo com infra-estrutura)

802.11 – Arquitetura de uma rede infraestruturada



- Estação (STA)
 - terminal com mecanismos de acesso ao meio sem fio e rádio para contactar o ponto de acesso
- Basic Service Set (BSS)
 - Grupo de estações que usam a mesma frequência de rádio
- Access Point
 - Estação itnegrada à WLAN e ao sistema de distribuição
- Portal
 - Ponte para outras redes cabeadas
- Distribution System
 - Rede de interconexão que forma uma rede lógica (EES: Extended Service Set) baseada em vários BSS

Pontos de Acesso Virtuais

Um mesmo ponto de acesso com suporte a vários ESSIDs

• útil quando se deseja diferenciar categorias de

Operações em uma rede 802.11

Distribuição

• encaminhamento de quadros pelo ponto de acesso

Integração

com outras redes

Associação

uma estação torna-se parte da rede definida por um AP

Re-associação

 quando uma estação se move de um BSS para outro dentro de um mesmo ESS

Dissociação

quando uma estação sai de uma rede

Fragmentação de quadros

Varredura de sinal

Operações em uma rede 802.11

Autenticação

- do cliente e/ou do AP
- estabelece uma relação de confiança entre cliente e AP

Desautenticação

termina a relação de confiança

RTS/CTS

• solicitação de reserva de acesso ao meio

Confidencialidade

criptografia dos dados transmitidos (em nível 2)

Controle da potência de transmissão

modo ativo e modo "dormente"

Suporte para mobilidade

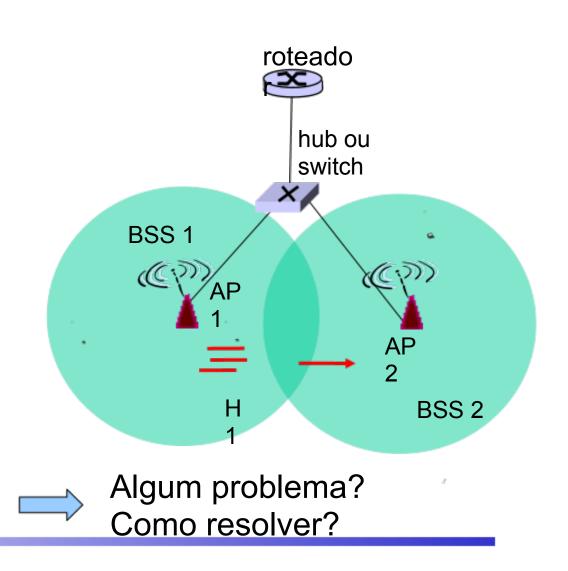
Dentro do mesmo BSS

• tecnicamente, não é mobilidade

Transição entre BSSs (no mesmo ESS)

 suporte transparente nos APs: novo AP informa antigo AP sobre a associação do host móvel

Entre ESSs distintos


- transição não é transparente
- simplesmente re-associa, mas deve restabelecer quaisquer conexões em andamento

Caso particular:

- vários BSSs, mesmo ESS, APs conectados via roteador
 - o requer mudança de endereço IP: perde as conexões em andamento
 - ou algum mecanismo de gerência de mobilidade para encaminhamento dos pacotes para a outra rede (IP Móvel): preservando as conexões

802.11: mobilidade dentro da mesma sub-rede (com switch)

- H1 permanece na mesma sub-rede IP: o endereço IP pode continuar o mesmo
- <u>switch</u>: qual AP está associado a H1?
 - auto-aprendizado
 (Cap.. 5): o switch
 observará os quadros
 de H1 e se "lembrará"
 de qual de suas
 portas pode ser usada
 para chegar a H1

802.11 - Roaming

Nenhuma conexão ou conexão ruim? Então:

Scanning

 faz uma varredura do ambiente, i.e., escuta o meio para detectar quadros de "beacon" ou envia quadros de "sondagem" e aguarda uma resposta

Requisita re-associação

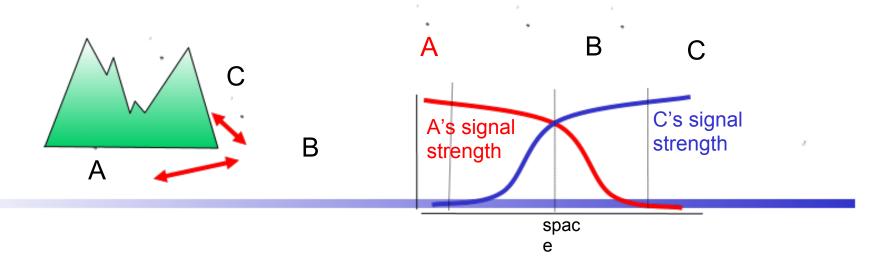
o estação envia uma requisição para um ou mais APs

Resposta de re-associação

- sucesso: AP respondeu, estação pode entrar na rede
- falha: continua a varredura

• AP aceita requisição de re-associação

- sinaliza a nova estação para o sistema de distribuição
- o sistema de distribuição atualiza sua base de dados (i.e., informação de localização das estações móveis)
- tipicamente, o sistema de distribuição informa o AP antigo, de forma que este possa liberar recursos alocados à estação que migrou


802.11 MAC

Controle de Acesso ao Meio

 Garante disciplina no acesso ao meio compartilhado por várias estações transmissoras

IEEE 802.11: múltiplo acesso ao meio compartilhado

- evitar colisões: 2 ou + nós transmitindo ao mesmo tempo
- 802.11: CSMA escuta antes de transmitir
 - o não colide com uma transmissão em curso feita por outro nó
- 802.11: <u>sem</u> detecção de colisão!
 - difícil de receber (ouvir) colisões enquanto transmite devido à característica do transceiver de rádio
 - o nem sempre pode ouvir colisões: terminal oculto, fading
 - o objetivo: evitar colisões: CSMA/CA (Collision Avoidance)

IEEE 802.11: Protocolo MAC: CSMA/CA

Transmissor 802.11

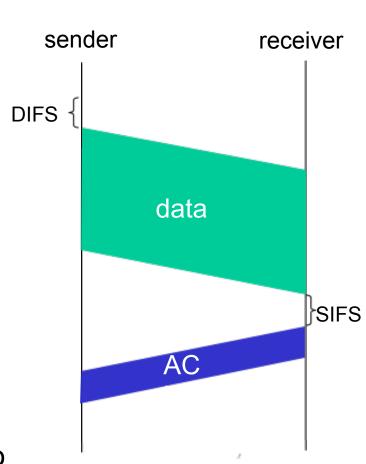
1 se escutar canal ocioso por DIFS seg então

transmite todo o quadro (sem CD)

2 se escutar canal ocupado então

inicia temporizador de backoff aleatório;

o temporizador é decrementado mesmo se o canal se tornar ocioso;


transmite quando o temporizador expira;

se não receber ACK, aumenta o intervalo de *backoff*, repete o passo 2.

Receptor 802.11

- se o quadro for recebido OK

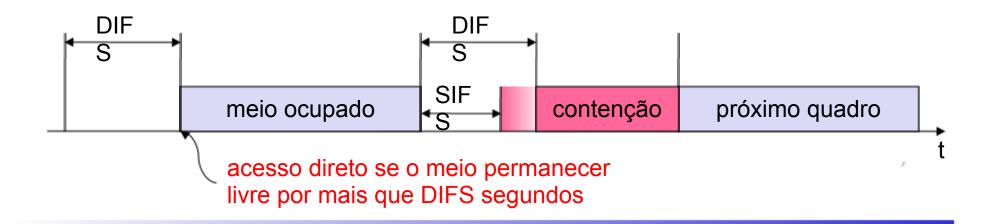
retorna ACK após SIFS seg (o ACK é ne-cessário devido ao problema do terminal oculto)

802.11 - Camada MAC I - DFWMAC

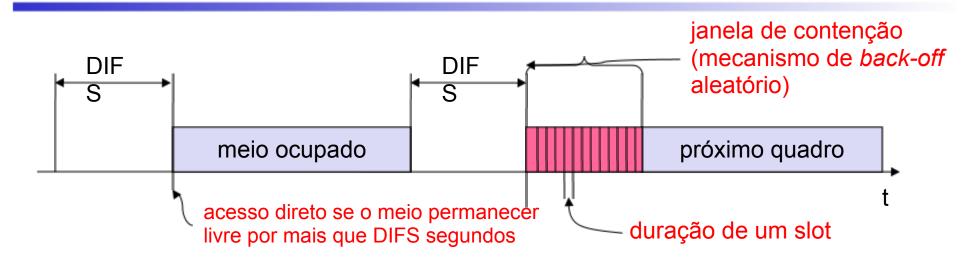
Distributed Foundation Wireless MAC

Serviços de tráfego

- Serviço de dados assíncronos (obrigatório)
 - troca de pacotes de dados baseada em "best-effort"
 - suporte a broadcast e multicast
- Serviço com restrições temporais (opcional)
 - implementado usando PCF (Point Coordination Function)

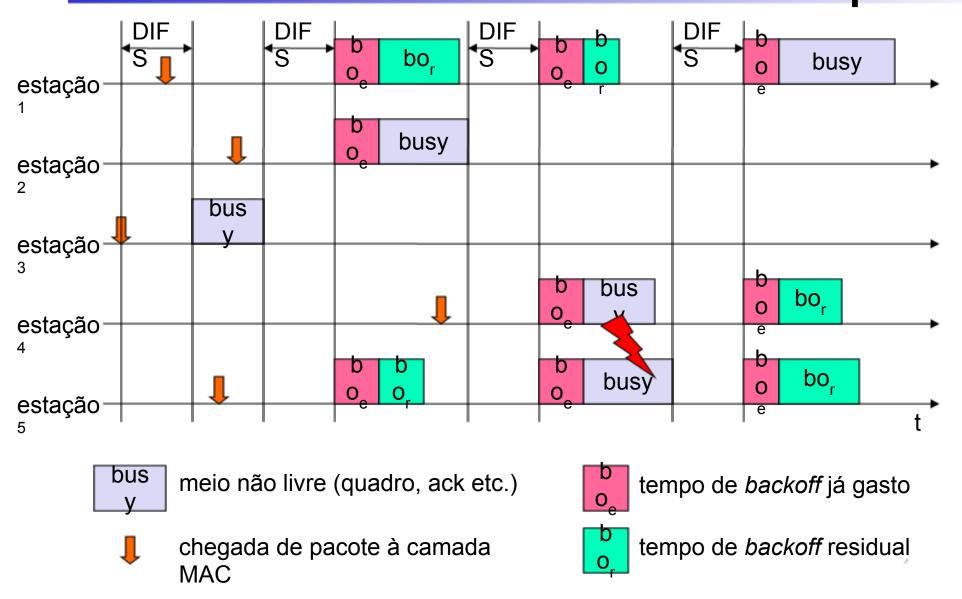

Métodos de acesso

- DFWMAC-DCF CSMA/CA (obrigatório)
 - o prevenção de colisão via mecanismo de "back-off" aleatório
 - preserva uma distância mínima entre pacotes consecutivos
 - pacote de ACK para reconhecimento (exceto para broadcast)
- DFWMAC-DCF com RTS/CTS (opcional)
 - evita o problema do terminal oculto
- DFWMAC- PCF (opcional)
 - o ponto de இட்கு அத்து சிறு கிருக்கு கையிக்கு முக்கு மிற்று இதை terminais de acordo com uma list (PCF Point Coordination Function


802.11 - camada MAC II

Prioridades

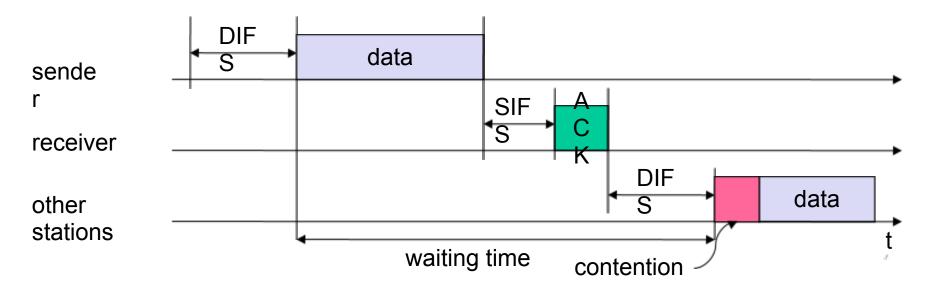
- definidas através de diferentes espaçamentos inter-quadros: por quanto tempo a estação deve esperar antes de poder transmitir
- mas sem prioridades rígidas (garantidas)
- SIFS (Short IFS Inter Frame Spacing)
 - o prioridade mais alta, para pacotes ACK, CTS, e respostas de *polling*
- DIFS (DCF Distributed Coordination Function IFS)
 - o prioridade mais baixa, para o serviço de dados assíncrono (incl. RTS)



802.11 - método de acesso CSMA/CA

- estação pronta para transmitir inicia "escuta" do meio (Carrier Sense baseado em CCA – Clear Channel Assessment)
- se o meio estiver livre pela duração de um espaço inter-quadro (IFS), a estação pode iniciar a transmissão (IFS depende do tipo de serviço)
- se o meio estiver ocupado, a estação deve esperar por um IFS livre e, então, ainda esperar um tempo de "back-off" aleatório (prevenção de colisão) – o tempo de back-off é um múltiplo da duração de um slot
- se uma outra estação ocupar o meio durante o período de back-off da estação, o temporizador de back-off é congelado (justiça: da próxima vez que tentar, só precisará esperar o tempo de back-off restante)

802.11 – estações competidoras – versão simplificada



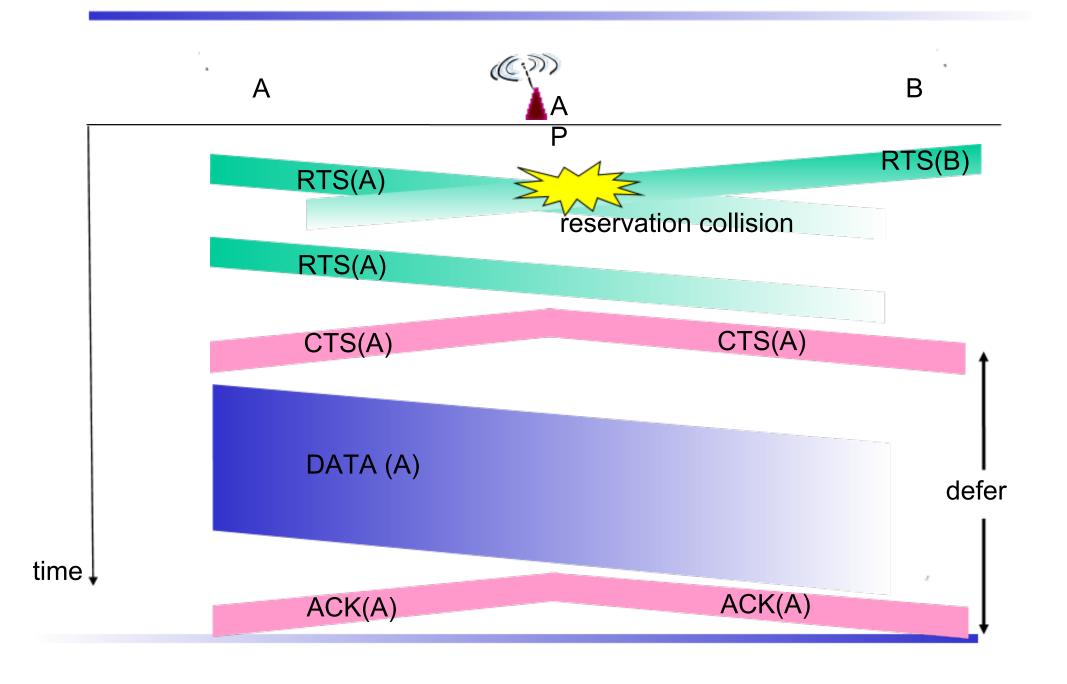
Obs.: Janela de contenção: define o intervalo máximo de *backoff* – seu tamanho é adaptável à carga atual da rede

802.11 - método de acesso CSMA/CA

Transmissão de pacotes unicast

- estação deve esperar por DIFS segs. (+ backoff, possivelmente) antes de enviar dados
- receptor envia ACK imediatamente (após espera por SIFS seg.) se pacote recebido corretamente (CRC) – não há colisão: SIF < DIFS
- retransmissão automática de pacotes de dados em caso de erros de transmissão (mas tem que esperar por DIFS + backoff novamente)

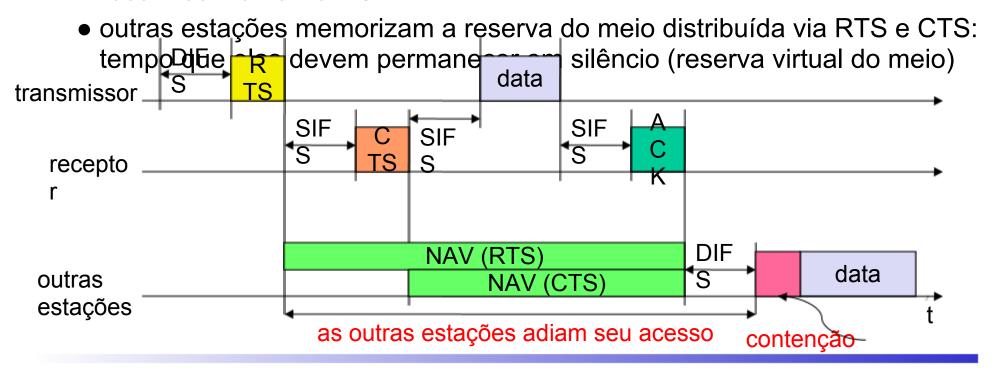
Obs.: Há um limite para o número de retransmissões: se todas


falharem reporta falha para a camada superior

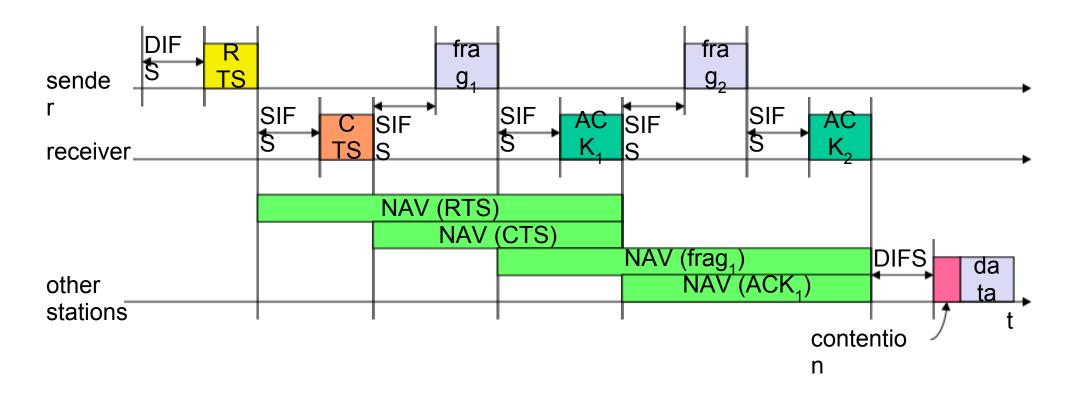
Evitando colisões: Extensão de CA para quadros maiores

idéia: permitir que o transmissor "reserve" o canal ao invés de fazer o acesso aleatório para transmitir os quadros de dados: evitar a colisão de <u>quadros de maior tamanho</u>

- o transmissor transmite primeiro pacotes pequenos de <u>request-</u> <u>to-send</u> (RTS) para o AP usando CSMA
 - RTSs podem colidir uns com os outros (mas eles são curtos)
- AP faz o broadcast de um <u>clear-to-send</u> (CTS) em resposta ao RTS
- o CTS é ouvido por todos os nós ao alcance do AP
 - o o transmissor (do RTS atendido) envia o quadro de dados
 - outras estações deferem suas transmissões (até o fim do tempo Evita completamente as colisões de quadros de reservado pelo RTS/CTS)
 dados usando pequenos pacotes de reserva!

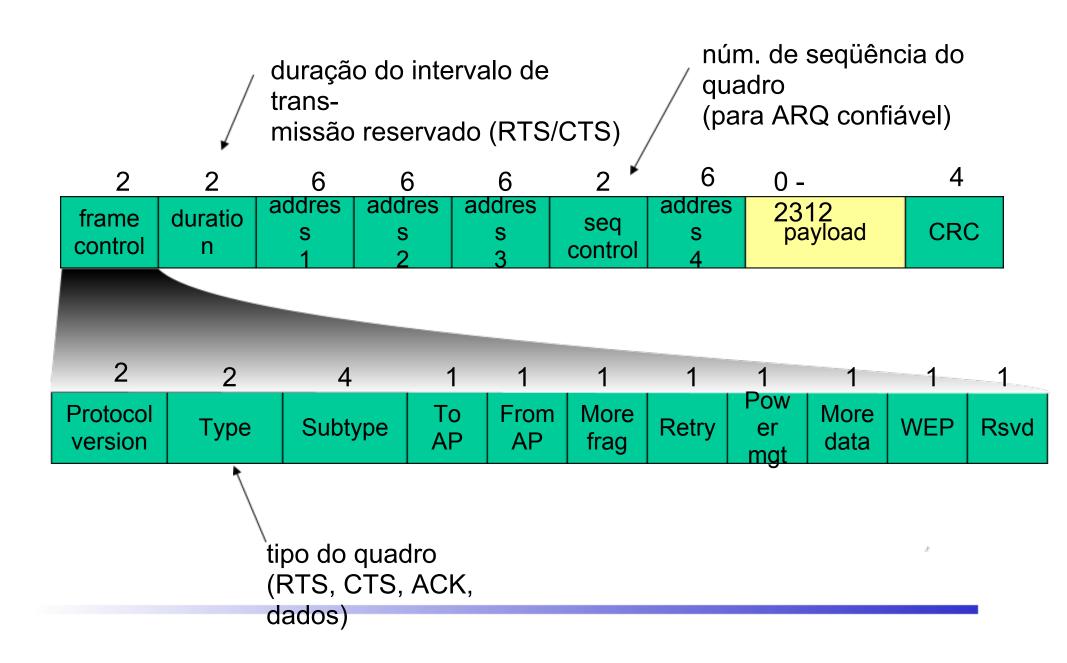

Collision Avoidance: troca de RTS-CTS

802.11 - DFWMAC com RTS / CTS


Transmissão de pacotes unicast

- estação pode enviar RTS com um parâmetro de reserva após esperar por DIFS segs. (reserva determina a quantidade de tempo necessária para transmissão do pacote de dados)
- reconhecimento via CTS após SIFS segs. pelo receptor (se pronto para receber)
- transmissor pode agora enviar os dados de uma vez (após SIFS segs.), reconhecimento via ACK

Obs.: NAV – *Network Allocation Vector*: duração da transmissão


Fragmentação

CSMA/CA Vs. RTS / CTS

- Quando usar RTS / CTS (i.e., MACA Multiple Access with Collision Avoidance):
 - ao transmitir pacotes grandes
 - RTS threshold: quadro máximo que pode ser transmitido sem RTS / CTS
 - o quadros menores transmitidos com CSMA/CA
 - o menor overhead para quadros pequenos
 - evita colisões para quadros grandes (que dariam maior prejuízo) – overhead de RTS / CTS é amortizado pelo maior tempo de transmissão útil

Formato dos Quadros 802.11

Formato de endereços MAC

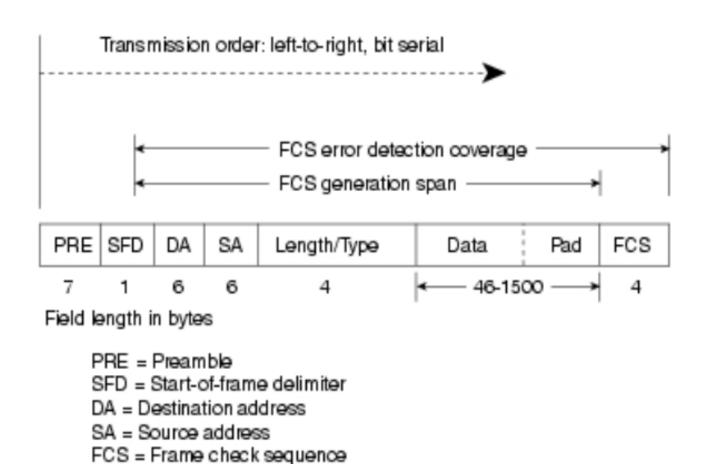
scenario	to DS	from DS	address 1	address 2	address 3	address 4
ad-hoc network	0	0	DA	SA	BSSID	-
infrastructure network, from AP	0	1	DA	BSSID	SA	-
infrastructure network, to AP	1	0	BSSID	SA	DA	-
infrastructure network, within DS	1	1	RA	TA	DA	SA

Quadro enviado de um BSS para outro através do DS, i.e., passando por dois APs intermediários – WDS (Wireless Distribution System). DS: Distribution System

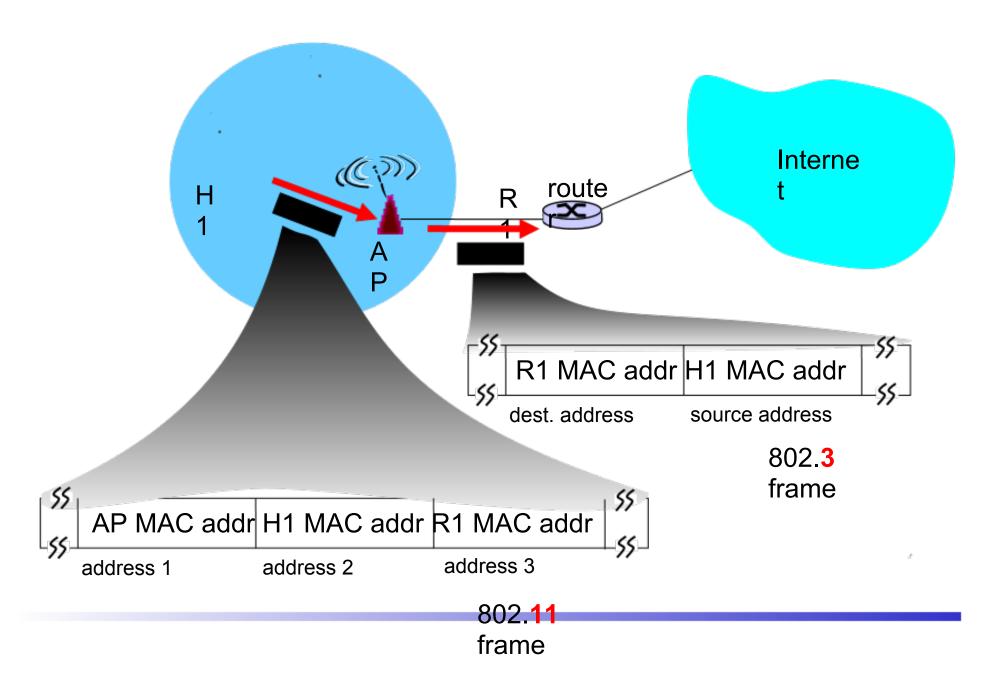
AP: Access Point

DA: Destination Address

SA: Source Address

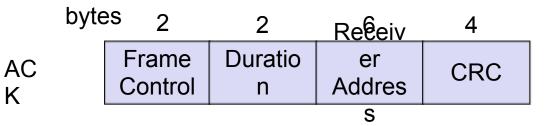

BSSID: Basic Service Set Identifier

RA: Receiver Address (receiving AP)


TA: Transmitter Address (sending

AP)

Comparação com quadros 802.3


Quadros 802.11: endereçamento (Ex.: to DS = 1; from DS = 0)

Quadros especiais: ACK, RTS, CTS

Acknowledgement

K

• Request To Send_{RT} S

byte	es 2	2	Re@eiv	_ 6	4
	Frame Control	Duratio n	er Addres	Transmitt er Address	CRC
			S	/ (dai 000	

Clear To Send

bytes 2 2 Re⁶eiv 4 Duratio Frame er CRC Addres Control n S

802.11 - Gerenciamento MAC

Sincronização

- encontrar uma LAN
- o permanecer dentro de uma LAN
- o temporizador, etc.

Gerenciamento de energia

- o entrar e sair do modo "sleep" sem perda de mensagens
- o sleep periódico, buferização de quadros, medições de tráfego

Associação / Re-associação

- o integração em uma LAN
- roaming, i.e., mudança de rede (de um ponto de acesso para outro)
- o scanning, i.e., busca ativa por uma rede

MIB – Management Information Base

 mantém informações de estado das estações e pontos de acesso, oferecendo acesso de leitura e escrita via SNMP

Gerenciamento de Energia

Ideia: desligar o transmissor se ele não for necessário Estados de uma estação: dormindo e acordada Função de sincronização no tempo (TSF)

Todas as estações acordam ao mesmo tempo

Infra-estrutura

- Traffic Indication Map (TIM)
 - o Lista de receptores unicast das transmissões do AP
- Delivery Traffic Indication Map (DTIM)
 - Lista de receptores broadcast/multicast nas transmissões do AP

Ad-hoc

- Ad-hoc Traffic Indication Map (ATIM)
 - o Anúncio dos receptores pelas estações que têm quadros a transmitir
 - Mais complexo não há um AP central para coordenar
 - Colisão de ATIMs é possível (escalabilidade?)

APSD (Automatic Power Save Delivery)

Novo método em 802.11e para substituir estes esquemas

802.11 - Roaming

Nenhuma conexão ou conexão ruim? Então:

Scanning

 Varre o ambiente à escuta de sinais de farol (beacon) ou envia sondas e aguarda por uma resposta

Pedido de Reassociação

A estação envia um pedido para um ou mais APs

Resposta de Reassociação

- sucesso: AP respondeu e a estação pode agora participar da rede
- falha: continua a varredura

AP – ao aceitar um pedido de reassociação

- Sinaliza a nova estação para o sistema de distribuição
- O sistema de distribuição atualiza sua base de dados (informação de localização)
- Tipicamente, o sistema de distribuição informa ao AP antigo, de forma que ele possa liberar recursos alocados para a estação

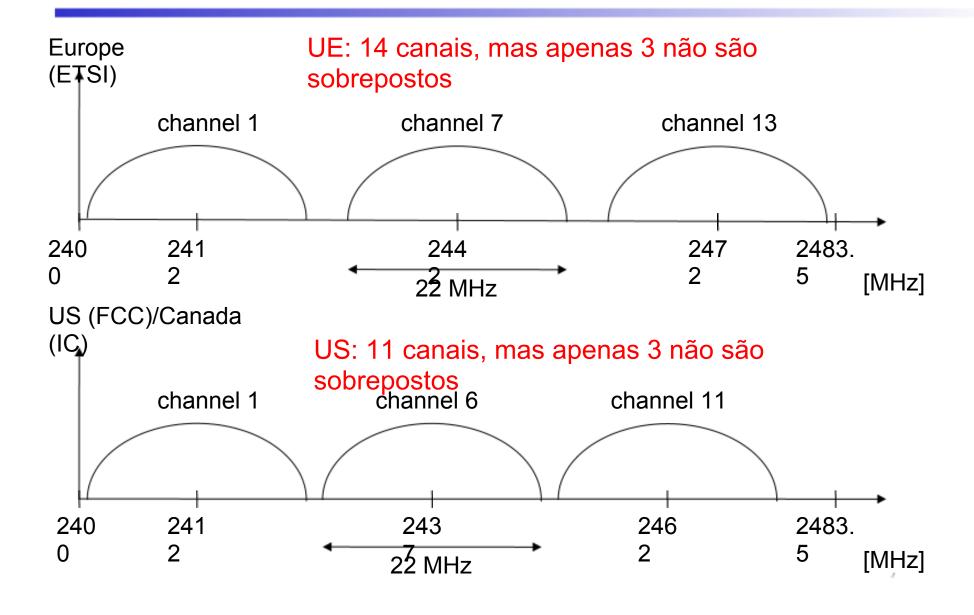
Fast roaming – 802.11r

• P. ex., para redes entre veículos e pontos na estrada

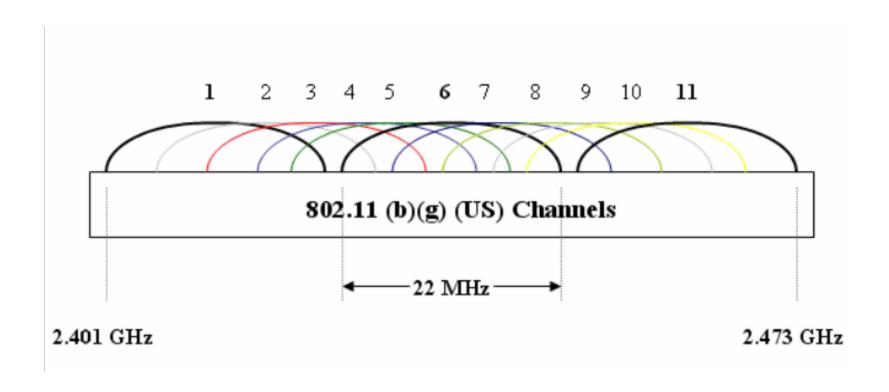
WLAN: IEEE 802.11b

- Taxa de transmissão
 - 1, 2, 5.5, 11 Mbit/s, dependendo da relação sinal/ruído (SNR)
 - Taxa de dados do usuário: máximo de aprox. 6 Mbit/s
- Alcance de transmissão
 - o 300m externo, 30m interno
 - taxa de transmissão máxima obtida com distâncias de ~10m (interna)
- Freqüência
 - Banda livre ISM a 2.4 GHz
- Segurança
 - Limitada, WEP é inseguro, SSID
- Custo
 - ~R\$150,00 (adaptador),~R\$200,00 a 1.100,00 (AP)
- Disponibilidade
 - muitos produtos, muitos fabricantes

- Connection set-up time
 - Sem conexão / sempre operante
- Qualidade de serviço
 - Tipicamente best effort, sem garantias (a menos que se use polling, mas poucos produtos oferecem suporte)
- Gerenciamento
 - Limitado (sem distribuição automática de chaves)
- Vantagens / Desvantagens
 - Vantagens: muitos sistemas instalados, bastante experiência, disponível em todo o mundo, banda livre ISM, muitos fabricantes, integrado em laptops e PDAs, sistema simples
 - Desvantagens: grande interferência na banda ISM, sem garantias de serviço, baixas taxas de transmissão


802.11b: Canais e associação

- 802.11b: o espectro de 2.4GHz a 2.485GHz é dividido em 11 canais com freqüências diferentes
 - o administrador do AP escolhe o canal
 - interferência é possível: o canal escolhido pode ser o mesmo utilizado por um AP vizinho!


• host: deve se associar com um AP

- faz uma varredura dos canais, à escuta de quadros "farol" (beacon) contendo o nome (SSID) e o endereço MAC do AP
 - passive scanning vs. active scanning
- seleciona o AP com o qual se associará
- pode realizar autenticação (segurança)
- tipicamente utilizará DHCP para obter um endereço IP na sub-rede do AP

Seleção de canais (sem sobreposição)

Canais em 802.11b/g

Apenas três canais (1, 6 e 11) não se sobrepõem

WLAN: IEEE 802.11a

- Taxa de transmissão
 - 6, 9, 12, 18, 24, 36, 48, 54 Mbit/s, dependendo da SNR
 - Throughput de usuário (pacotes de 1500 bytes): 5.3 (6), 18 (24), 24 (36), 32 (54)
 - o 6, 12, 24 Mbit/s obrigatórias
- Alcance de transmissão
 - 100m externo, 10m interno
 - Ex.:, 54 Mbit/s até 5 m, 48 até 12 m, 36 até 25 m, 24 até 30m, 18 até 40 m, 12 até 60 m
- Freqüência
 - Livre: 5.15-5.25, 5.25-5.35, 5.725-5.825 GHz (banda ISM)
- Segurança
 - o Limitada, WEP inseguro, SSID
- Custo
 - R\$600,00 (adaptador), <R\$1.500,00 (AP)
- Disponibilidade
 - o Alguns produtos, alguns fabricantes

- Connection set-up time
 - Sem conexão / sempre operante
- Qualidade de serviço
 - Tipicamente best effort, sem garantias (idêntico em todos os produtos 802.11)
- Gerenciamento
 - Limitado (sem distribuição automática de chaves)
- Vantagens / Desvantagens
 - Vantagens: enquadra-se nos padrões 802.x; banda ISM livre; disponível; sistema simples; usa uma banda menos povoada (5GHz)
 - Desvantagens: sombreamento mais severo, devido a freqüências mais altas; sem QoS

IEEE 802.11g

- 2.4GHz
- Compatibilidade com 802.11b + taxas de 12 a 54Mbps
 - se houver uma estação 802.11b na rede, a taxa máxima fica limitada a 11Mbps
- Utiliza OFDM (como 802.11a)

desenvolvimentos (08/2009)

802.11c: Bridge Support

Definition of MAC procedures to support bridges as extension to 802.1D

802.11d: Regulatory Domain Update

• Support of additional regulations related to channel selection, hopping sequences

802.11e: MAC Enhancements – QoS

- Enhance the current 802.11 MAC to expand support for applications with Quality of Service requirements, and in the capabilities and efficiency of the protocol
- Definition of a data flow ("connection") with parameters like rate, burst, period... supported by HCCA (HCF (Hybrid Coordinator Function) Controlled Channel Access, optional)
- Additional energy saving mechanisms and more efficient retransmission
- EDCA (Enhanced Distributed Channel Access): high priority traffic waits less for channel access

802.11F: Inter-Access Point Protocol (withdrawn)

Establish an Inter-Access Point Protocol for data exchange via the distribution system

802.11h: Spectrum Managed 802.11a

 Extension for operation of 802.11a in Europe by mechanisms like channel measurement for dynamic channel selection (DFS, Dynamic Frequency Selection) and power control (TPC, Transmit Power Control)

802.11i: Enhanced Security Mechanisms

- Enhance the current 802.11 MAC to provide improvements in security.
- TKIP enhances the insecure WEP, but remains compatible to older WEP systems
- AES provides a secure encryption method and is based on new hardware

desenvolvimentos (08/2009)

802.11j: Extensions for operations in Japan

 Changes of 802.11a for operation at 5GHz in Japan using only half the channel width at larger range

802.11-2007: Current "complete" standard

• Comprises amendments a, b, d, e, g, h, i, j

802.11k: Methods for channel measurements

 Devices and access points should be able to estimate channel quality in order to be able to choose a better access point of channel

802.11m: Updates of the 802.11-2007 standard

802.11n: Higher data rates above 100Mbit/s

- Changes of PHY and MAC with the goal of 100Mbit/s at MAC SAP
- MIMO antennas (Multiple Input Multiple Output), up to 600Mbit/s are currently feasible
- However, still a large overhead due to protocol headers and inefficient mechanisms

802.11p: Inter car communications

- Communication between cars/road side and cars/cars
- Planned for relative speeds of min. 200km/h and ranges over 1000m
- Usage of 5.850-5.925GHz band in North America

802.11r: Faster Handover between BSS

- Secure, fast handover of a station from one AP to another within an ESS
- Current mechanisms (even newer standards like 802.11i) plus incompatible devices from different vendors are massive problems for the use of, e.g., VoIP in WLANs