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Abstract – We present a new model for multiple-

input multiple-output (MIMO) outdoor wireless fad-

ing channels which is more general and realistic than

the usual i.i.d. model. We investigate the channel

capacity as a function of parameters such as the lo-

cal scattering radius at the transmitter and the re-

ceiver, the distance between the transmit (TX) and

receive (RX) arrays, and the antenna beamwidths

and spacing. We point out the existence of “pin-

hole” channels which exhibit low fading correlation

between antennas but still have poor rank proper-

ties and hence low capacity. Finally we show that

even at long ranges high channel rank can easily be

obtained under mild scattering conditions.

1. INTRODUCTION

Multiple-input multiple-output (MIMO) communica-
tion techniques make use of multi-element antenna ar-
rays at both the TX and the RX side of a radio link and
have been shown theoretically to drastically improve
the capacity over more traditional single-input multiple-
output (SIMO) systems [2, 3, 5, 7]. SIMO channels in
wireless networks can provide diversity gain, array gain,
and interference canceling gain among other benefits. In
addition to these same advantages, MIMO links can of-
fer a multiplexing gain by opening Nmin parallel spatial
channels, where Nmin is the minimum of the number
of TX and RX antennas. Under certain propagation
conditions capacity gains proportional to Nmin can be
achieved [8]. Space-time coding [14] and spatial multi-
plexing [1, 2, 7, 16] (a.k.a. “BLAST”) are popular signal
processing techniques making use of MIMO channels to
improve the performance of wireless networks.

Previous work and open problems. The litera-
ture on realistic MIMO channel models is still scarce.
For the line-of-sight (LOS) case, previous work includes
[13]. In the fading case, previous studies have mostly
been confined to i.i.d. Gaussian matrices, an idealis-

tic assumption in which the entries of the channel ma-
trix are independent complex Gaussian random vari-
ables [2, 6, 8]. The influence of spatial fading corre-
lation on either the TX or the RX side of a wireless
MIMO radio link has been addressed in [3, 15]. In prac-
tice, however, the realization of high MIMO capacity is
sensitive not only to the fading correlation between in-
dividual antennas but also to the rank behavior of the
channel. In the existing literature, high rank behav-
ior has been loosely linked to the existence of a dense
scattering environment. Recent successful demonstra-
tions of MIMO technologies in indoor-to-indoor chan-
nels, where rich scattering is almost always guaranteed,
confirm this [9].
Despite this progress, several important questions re-

garding outdoor MIMO channels remain open and are
addressed in this paper:

• What is the capacity of a typical outdoor MIMO
channel?

• What are the key propagation parameters govern-
ing capacity?

• Under what conditions do we get a full rank MIMO
channel (and hence high capacity)?

• What is a simple analytical model describing the
capacity behavior of outdoor MIMO wireless chan-
nels ?

Here we suggest a simple classification of MIMO chan-
nels and devise a MIMO channel model whose generality
encompasses some important practical cases. Unlike the
channel model used in [3, 15], our model suggests that
the impact of spatial fading correlation and channel rank
are decoupled although not fully independent, which al-
lows for example to describe MIMO channels with un-
correlated spatial fading at the transmitter and the re-
ceiver but reduced channel rank (and hence low capac-
ity). This situation typically occurs when the distance



between transmitter and receiver is large. Furthermore,
our model allows description of MIMO channels with
scattering at both the transmitter and the receiver.
We use the new model to describe the capacity be-

havior as a function of the wavelength, the scattering
radii at the transmitter and the receiver, the distance
between TX and RX arrays, antenna beamwidths, and
antenna spacing. Our model suggests that full MIMO
capacity gain can be achieved for very realistic values of
scattering radii, antenna spacing and range. It shows, in
contrast to usual intuition, that large antenna spacing
has only limited impact on capacity under fairly general
conditions. Another case described by the model is the
“pin-hole” channel where spatial fading is uncorrelated
and yet the channel has low rank and hence low capac-
ity. We show that this situation typically occurs for very
large distances between transmitter and receiver. In the
1 × 1 case (i.e. one TX and one RX antenna), the pin-
hole channel yields capacities worse than the traditional
Rayleigh fading channel. Our results are validated by
comparing with a ray tracing-based channel simulation.
We find a good match between the two models over a
wide range of situations.

2. CAPACITY OF MIMO CHANNELS AND MODEL
CLASSIFICATION

We briefly review the capacity formula for MIMO chan-
nels and present a classification of MIMO channels.
We restrict our discussion to the frequency-flat fading
case and we assume that the transmitter has no chan-
nel knowledge whereas the receiver has perfect channel
knowledge.

2.1. Capacity of MIMO channels

We assume M RX and N TX antennas. The capacity
in bits/sec/Hz of a MIMO channel under an average
transmitter power constraint is given by1 [2]

C = log2

[
det
(
IM +

ρ

N
HH∗

)]
, (1)

where H is the M ×N channel matrix, IM denotes the
identity matrix of size M, and ρ is the average signal-
to-noise ratio (SNR) at each receiver branch. The el-
ements of H are complex Gaussian with zero mean
and unit variance, i.e., [H]m,n ∼ CN (0, 1) for m =
1, 2, ...,M, n = 1, 2, ..., N . Note that since H is ran-
dom C will be random as well. Assuming a piece-wise
constant fading model and coding over many indepen-
dent fading intervals2, EH{C} can be interpreted as the
Shannon capacity of the random MIMO channel [5].

1The superscript ∗ stands for Hermitian transpose.
2EH stands for the expectation over all channel realizations.

2.2. Model classification

Let us next introduce the following MIMO theoretical
channel models:

• Uncorrelated high rank (UHR, a.k.a. i.i.d.) model:
The elements of H are i.i.d. CN (0, 1). This is the
idealistic model considered in most studies.

• Uncorrelated low rank (ULR) (or “pin-hole”)
model: H = grx g

∗
tx, where grx and gtx

are independent RX and TX fading vectors
with i.i.d. complex-valued components grx ∼
CN (0, IM ),gtx ∼ CN (0, IN ). Every realization of
H has rank 1 and therefore although diversity is
present capacity will be much less than in the ULR
model since there is no multiplexing gain.

• Correlated low rank (CLR) model: H =
grxg

∗
txurxu

∗
tx where grx ∼ CN (0, 1) and gtx ∼

CN (0, 1) are independent random variables and urx
and utx are fixed deterministic vectors of sizeM × 1
and N × 1, respectively, and with unit modulus en-
tries. This model yields RX array gain only.

• 1 × 1 HR, defined by the UHR model with M =
N = 1, also known as Rayleigh fading channel.

• 1 × 1 LR, defined by the ULR or CLR model with
M = N = 1 (double Rayleigh channel).

Note that the low rank models (ULR, CLR, 1×1 LR)
above do not use the traditional normal distribution for
the entries ofH but instead the product of two Gaussian
variables. This type of distribution is shown later to
occur in important practical situations. In the 1×1 case,
The LR model has worsened fading statistics. This is
due to the intuitive fact that a double Rayleigh channel
will fade “twice as often” as a standard Rayleigh channel
[4].

3. DISTRIBUTED SCATTERING MIMO MODEL

We consider non-line-of-sight channels, where fading is
induced by the presence of scatterers at both ends of the
radio link. The purpose is to develop a general stochas-
tic channel model that captures separately the diversity
and rank properties and that can be used to predict
practically the high rank region of the MIMO chan-
nel. The particular case of LOS channels is addressed
in [4], where the authors derive a simple rule predicting
the high rank region. In the following, for the sake of
simplicity, we consider the effect of near-field scatterers
only. We ignore remote scatterers assuming that the
path loss will tend to limit their contribution to the to-
tal channel energy. Finally, we consider a frequency-flat
fading channel.



3.1. SIMO Fading Correlation Model

We consider a linear array of M omni-directional RX
antennas with spacing dr. A number of distributed scat-
terers act as perfect omnidirectional scatterers of a sig-
nal which eventually impinges on the RX array. The
plane-wave directions of arrival (DOAs) of these signals
span an angular spread of θr radians (see Fig. 1).

M RXs

dr
O r

Figure 1: Propagation scenario for SIMO fading corre-
lation. Each scatterer transmits a plane-wave signal to
a linear array

Several distributions can be considered for the DOAs,
including uniform, Gaussian, Laplacian etc. [10, 11].
The addition of different plane-waves causes space-
selective fading at the RX antennas. It is well known
that the resulting fading correlation is governed by the
angle spread, the antenna spacing and the wavelength.
The RX array response vector h can now be modeled as

h ∼ CN (0,Rθr,dr) or equivalently

h = R
1/2
θr,dr
g with g ∼ CN (0, IM ),

(2)

where Rθr,dr is the M × M correlation matrix. For
uniformly distributed DOAs, we find [10, 12]

[Rθr,dr ]m,k =
1

S

i=S−12∑
i=−S−12

e−2πj(k−m)dr cos(
π
2+θr,i) (3)

where S (odd) is the number of scatterers with corre-
sponding DOAs θr,i. For “large” values of the angle
spread and/or antenna spacing, Rθr,dr will converge
to the identity matrix, which gives uncorrelated fad-
ing. For “small” values of θr, dr, the correlation ma-
trix becomes rank deficient (eventually rank one) caus-
ing (fully) correlated fading. For the sake of simplicity,
we furthermore assume the mean DOA to be orthogo-
nal to the array (bore-sight). Note that the model pro-
vided in (2) can readily be applied to an array of TX
antennas with corresponding antenna spacing and signal
departure angle spread.

3.2. MIMO Correlated Fading Model

We consider the NLOS propagation scenario depicted in
Fig. 2.

N TXs
M RXs

Dt

D
r

d
r

dt

R

Or sO O t

Figure 2: Propagation scenario for fading MIMO chan-
nel.

The propagation path between the two arrays is ob-
structed on both sides of the link by a set of significant
near-field scatterers (such as buildings and large objects)
refered to as TX or RX scatterers. Scatterers are mod-
eled as omni-directional ideal reflectors. The extent of
the scatterers from the horizontal axis is denoted as Dt
and Dr, respectively. When omni-directional antennas
are used Dt and Dr correspond to the TX and RX scat-
tering radius, respectively. On the RX side, the signal
reflected by the scatterers onto the antennas impinge on
the array with an angular spread denoted by θr, where
θr is function of the position of the array with respect
to the scatterers. Similarly on the TX side we define
an angular spread θt. The scatterers are assumed to be
located sufficiently far from the antennas for the plane-
wave assumption to hold. We furthermore assume that
Dt, Dr � R (local scattering condition).

3.2.1. Signal at the Receive Scatterers

We assume S scatterers on both sides, where S is an
arbitrary, large enough number for random fading to
occur (typically S > 10 is sufficient). The exact dis-
tribution of the scatterers is irrelevant here. Every TX
scatterer captures the radio signal and re-radiates it in
the form of a plane wave towards the RX scatterers.
The RX scatterers are viewed as an array of S virtual
antennas with average spacing 2Dr/S, and as such ex-
perience an angle spread defined by tan(θS/2) = Dt/R.
We denote the vector signal originating from the n-th
TX antenna and captured by the S RX scatterers as
yn = [y1,n, y2,n, ..., yS,n]

T . Approximating the RX
scatterers as a uniform array of sensors and using the



correlation model of (3.1), we find

yn ∼ CN (0,RθS,2Dr/S) or equivalently

yn = R
1/2
θS ,2Dr/S

gn with gn ∼ CN (0, IS).
(4)

For uncorrelated TX antennas, the S×N channel matrix
describing the propagation between the N TX antennas
and the S scatterers Y = [y1, y2, ..., yN ] simply writes

Y = R
1/2
θS,2Dr/S

Gt, (5)

where Gt = [g1, g2, ..., gN ] is an S ×N i.i.d. Rayleigh
fading matrix. However, there is generally correlation
between the TX antennas because of finite angle spread
and insufficient antenna spacing. Therefore, a more ap-
propriate model becomes

Y = R
1/2
θS,2Dr/S

GtR
1/2
θt,dt
, (6)

whereR
1/2
θt,dt

is the N×N matrix controlling the TX an-
tenna correlation as suggested in the TX form of model
(2).

3.2.2. The MIMO Model

Like the TX scatterers, the Rx scatterers are assumed
here to ideally reradiate the captured energy. As shown
in Fig.2, a set of plane waves, with total angle spread
θr, impinge on the RX array. Denoting the distance
between the s-th scatterer and the m-th RX antenna as
ds,m, the vector of received signals from the n-th TX
antenna can be written as

zn =


 e

−2πjd1,1/λ ...... e−2πjdS,1/λ

: :

e−2πjd1,M/λ ...... e−2πjdS,M/λ




︸ ︷︷ ︸
Φ

yn. (7)

Collecting all RX and TX antennas according to Z =
[z1, z2, ..., zN ], we obtain

Z = ΦY, (8)

where Φ is the M × S matrix in (7). The problem with
the expression in (8) is the explicit use of deterministic
phase shifts in the matrix Φ which makes the model in-
convenient. The simple equivalence result below allows
us to get rid of this inconvenience and obtain a new and
entirely stochastic MIMO model.
Lemma. For S → ∞, Z = ΦY has the same p.d.f.
as R

1/2
θr,dr
GrY where Gr is an i.i.d. Rayleigh fading

matrix of size M × S.
Proof. See the appendix.

After proper power normalization3 and replacing Y
by (6), we obtain the following new MIMO model

H =
1√
S
R
1/2
θr,dr
GrR

1/2
θS,2Dr/S

GtR
1/2
θt,dt
. (9)

3.3. Interpretation & The Pin-Hole Channel

In (9), the spatial fading correlation between the TX
antennas, and therefore the TX diversity gain, is gov-

erned by the deterministic matrix R
1/2
θt,dt

and hence im-
plicitly by the local TX angle spread, the TX antenna
beamwidth and spacing. On the RX side, the fading
correlation is similarly controled by the RX angle spread

and antenna spacing through R
1/2
θr,dr
.

The rank of the MIMO channel is primarily controled

through R
1/2
θS,2Dr/S

. The model in (9) shows that it is

well possible to have uncorrelated fading at both sides,
and yet have a rank deficient MIMO channel with re-
duced capacity. Such a channel is dubbed a “pin-hole”
because scattering (fading) energy travels through a
very thin air pipe, preventing the rank to build up. In
practice, this occurs when the product DtDr is small
compared to the range R, making θS small, and causing

the rank of R
1/2
θS,2Dr/S

to drop. Note that Dt, Dr play a

role analogous to dt, dr in the green field case, as shown
in [4].
Eq. (9) suggests that in the scattering case the rank

behavior of the MIMO channel is mainly governed by
the scattering radii and by the range. Scatterers can
be viewed as virtual antenna arrays with very large
spacing and aperture. Unlike the usual intuition, the
physical antenna spacing has limited impact on the ca-
pacity provided antennas remain uncorrelated, which
occurs at λ/2 spacing for reasonably high local angle
spread/antenna beamwidth. Note that if scattering is
absent at one end of the link, the relevant parameter
on that particular end driving the MIMO rank becomes
the antenna spacing.
When either the TX or the RX antennas are fully

correlated due to small local angle spread, the rank of
the MIMO channel also drops. In this situation, both
the diversity and multiplexing gains vanish, preserving
only the RX array gain. Note that there is no TX array
gain since we assumed that the channel is unknown in
the transmitter.
From the remarks above it follows that antenna cor-

relation causes rank loss but the converse is not true.
The new model contains not one but the product of

two random Rayleigh distributed matrices. This is in
contrast with the traditional Rayleigh MIMO model of

3We use a normalization to fix the channel energy regardless
of how many scatterers are considered.



[2, 8]. Depending on the rank of R
1/2
θS,2Dr/S

, the re-

sulting MIMO fading statistics ranges “smoothly” from
Gaussian to product of two independent Gaussians. In

the high rank region, R
1/2
θS,2Dr/S

becomes the identity

matrix. Using the central limit theorem, the product
GrGt approaches a single Rayleigh distributed matrix,
which justifies the traditional model in that particular

case. In the low rank (i.e. rank one) region, R
1/2
θS,2Dr/S

is the all one matrix. The MIMO channel becomes
R
1/2
θr,dr
grx g

∗
txR

1/2
θt,dt
, an outer-product with independent

TX and RX Rayleigh fading vectors. In this case we
have no multiplexing gain, but there is still diversity
gain with the exact amount depending on the TX and
RX fading correlation.

In practice depending on local angle spread and an-
tenna spacing, the model will range smoothly from the
CLR to UHR models.

In the 1× 1 case, meaningful high rank and low rank
models can still be defined, according to the rank taken

by R
1/2
θS ,2Dr/S

. The high rank model is the traditional

Rayleigh channel. The low rank model has “double
Rayleigh” distribution. Note that the model does not
suggest the existence of a “correlated high rank” MIMO
channel, which corresponds also to intuition.

4. MONTE CARLO SIMULATIONS

The capacity distribution predicted by the proposed
stochastic MIMO model for various values of the key
parameters is compared to that achieved by an actual
ray tracing channel with the same parameters.

The ray tracing model follows the scenario depicted
in Fig. 2. In all examples we used S = 20 TX and
RX scatterers which are randomly distributed uniformly
around a line perpendicular to the x-axis. We found that
the final capacity results are insensitive to the particular
distribution of the scatterers as long as Dt, Dr and the
angular spreads remain fixed. We usedM = N = 3 and
placed the scatterers at a distance Rt from the TX array
and Rr from the RX array. We use Rr = Rr = Dt =
Dr in all simulations in order to maintain a high local
angle spread and hence low antenna correlation. The
frequency was set to 2GHz and the SNR was 10 dB.

To introduce random fading we use small random per-
turbations of the TX and RX antenna array positions.
We plot the capacity distribution (model and ray trac-
ing) for three separate sets of control parameters, cover-
ing the region between the UHR and the ULR models.
The curves obtained are shown in Fig. 3.

Fig. 4 illustrates the impact of the rank of R
1/2
θS,2Dr/S

on the capacity in the 1 × 1 case. The proposed chan-
nel model predicts the capacity distribution up to one
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Figure 3: Capacity c.d.f. obtained with MIMO model
for three sets of parameters. From left to right. Set 1:
Dt = Dr = 30m, R = 1000km. Set 2: Dt = Dr = 50m,
R = 50km. Set 3: Dt = Dr = 100m, R = 5km.
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Figure 4: Capacity c.d.f. obtained for the 1 × 1 model.
We use two sets of parameters: from left to right. Set
1: Dt = Dr = 30m, R = 1000km. Set 2: Dt = Dr =
100m, R = 5km.

bps/Hz in all cases and becomes almost exact as we ap-
proach UHR and ULR regions.

Finally, we look at the capacity (rank) build-up as
function of the scatering radius.

Fig. 5 is a plot of average capacity for varying Dt =
Dr with R fixed at 10 km. The high capacity region is
quickly attained, even for a very large range. Existing
measurements suggest practical scattering radiuses of
around 100 meters [11].

5. CONCLUSION

We introduced a model for describing the capacity be-
havior of outdoor MIMO channels. The model describes
the effect of certain propagation geometry parameters in
scattering situations such as the scattering radius and
the range. Our model predicts excellent performance
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outdoors for very reasonable values of scattering radius,
almost regardless of how large the antenna spacing is.
We pointed out the existence of pin-hole channels which
can occur for very large values of the range R.
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APPENDIX (Proof of the Lemma)

Let R
1/2
θS,2Dr/S

= UΣU∗ be the eigendecomposition of

R
1/2
θS,2Dr/S

. According to (6)

Z = ΦY = ΦUΣU∗GtR
1/2
θt,dt
. (10)

When S is large enough, the central limit theorem ap-
plies to the product F = ΦU which tends to be nor-
mally distributed. Hence, [F]m,s ∼ CN(0, 1). The cor-
relation between the rows of ΦU is governed by the
RX angle spread θr and the antenna spacing through
Rθr,dr . Because the columns of U are orthogonal, we
easily show that in addition the columns of F are in-
dependent. It can furthermore be shown that F ∼
R
1/2
θr,dr
Gr, where Gr is an M × S i.i.d. Rayleigh dis-

tributed matrix. Hence, for large S, we have Z ∼
R
1/2
θr,dr
GrΣU

∗GtR
1/2
θt,dt
. Finally, the distribution of Gr

is unchanged if we right-multiply Gr by the unitary

matrix U and hence Z ∼ R1/2θr,drGrUΣU∗GtR
1/2
θt,dt

∼
R
1/2
θr,dr
GrR

1/2
θS,2Dr/S

GtR
1/2
θt,dt
.
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[10] D. Asztély, “On antenna arrays in mobile communication
systems: Fast fading and GSM base station receiver algo-
rithms,” Tech. Rep. IR-S3-SB-9611, Royal Institute of Tech-
nology, Stockholm, Sweden, March 1996.

[11] J. Fuhl, A. F. Molisch, and E. Bonek, “Unified channel
model for mobile radio systems with smart antennas,” IEE
Proc.-Radar, Sonar Navig., vol. 145, pp. 32–41, Feb. 1998.

[12] R. B. Ertel, P. Cardieri, K. W. Sowerby, T. S. Rappaport,
and J. H. Reed, “Overview of spatial channel models for an-
tenna array communication systems,” IEEE Personal Com-
munications, pp. 10–22, Feb. 1998.

[13] P. Driessen, G. J. Foschini, “On the capacity formula for
multiple input multiple output wireless channels: A geomet-
ric interpretation,” IEEE Transactions on Communications,
pp. 173–176, Feb. 1999.

[14] V. Tarokh, N. Seshadri, A. R. Calderbank, “Space-time
codes for high data rate wireless communication: Perfor-
mance criterion and code construction,” IEEE Transactions
on Information Theory, March 1998, vol. 44, no. 2, pp. 744-
765.

[15] D. Shiu and G. J. Foschini and M. J. Gans and J. M.
Kahn, “Fading correlation and its effect on the capacity
of multi-element antenna systems,” IEEE Trans. Comm.,
March 2000, vol. 48, no. 3, pp. 502-513.

[16] G. D. Golden, G. J. Foschini, R. A. Valenzuela, P. W. Wolni-
ansky, “Detection Algorithm and Initial Laboratory Results
using the V-BLAST Space-Time Communication Architec-
ture,” Electronics Letters, Vol. 35, No. 1, Jan. 1999, pp. 14-
15.


